
Our method takes advantage of the fact that, in 
structured images where edges form "walls," the 
closest point to any background pixel along a 
perpendicular direction to the wall can be found 
deterministically. Instead of performing a general 
distance search across multiple directions, our 
optimized approach calculates distances only for pixels 
lying on specific linear paths perpendicular to 
structured walls.
Although digital outlines are never perfectly straight in 
continuous space, pixel-level rows, columns, and 
diagonals are. And, with an analysis of closest 
neighbor-pixels, it is easy to decide which operation to 
apply to each outline pixel, as explained in Figure 1c.

The implementation follows these steps:
1. Edge Detection: Identify structured black regions 

(walls).
2. Direction-Based Distance Propagation: Assign 

distance calculations only to linear pixel paths 
perpendicular to the nearest edge. This eliminates 
unnecessary calculations in areas where direct 
projections provide the closest points.

3. Selective Neighbor Evaluation: Instead of 
evaluating all pixels, a switch-case logic 
determines whether a pixel belongs to an optimal 
linear path.

This results in a dramatically reduced number of 
required computations compared to conventional 
exhaustive distance searches.

3. Results

We tested our approach on a 1000 × 1000 image 
conta in ing s t ructured  edge regions .  Three 
implementations were compared:

1. Introduction

Computing distance maps efficiently has long been a 
challenge in image processing, particularly when 
dealing with large image resolutions. Conventional 
methods, such as naive per-pixel searching, exhibit 
quadratic complexity, making them infeasible for real-
time applications. The state-of-the-art techniques, 
including Euclidean Distance Transforms (EDT) [1] 
and Multi-Source BFS (MS-BFS) [2], provide 
optimizations but may still suffer from excessive 
computational overhead in complex scenarios.

Here, we propose a new method that leverages the 
geometry of structured edges, referred to as the 
"Straight Wall Effect." This technique enables targeted 
distance calculations in predictable directions, 
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reducing the computational burden from O(n ) 
complexity to O(n) in specific cases, particularly for 
structured shapes such as rectangles and aligned 
segments.

2. Methodology

2.1 Conventional Approaches

In naive methods, each background pixel iterates 
outward to find the nearest edge pixel (see Fig.1a). This 
approach guarantees correctness but results in 
excessive computations. Traditional distance 
transform algorithms, such as Felzenszwalb and 
Huttenlocher’s EDT [3], mitigate this by precomputing 
nearest edges through one-dimensional sweeps, 
leveraging lower-envelope functions. See Fig.1b for 
the basic EDT operation.
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5. Conclusion

We present a novel method for optimizing distance 
map calculations by leveraging structured wall 
projections, dramatically reducing computational 
time. This approach demonstrates that targeted pixel 
evaluations can replace exhaustive searches, achieving 
substantial efficiency improvements. Our findings 
suggest broad applicability in real-time graphics 
processing,  robotics ,  and medical  imaging 
applications.
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1. Naive pixel-wise searching: 809 seconds.
2. Basic EDT-based method: 41 seconds.
3. Straight Wall Optimization: <1 seconds on a 3 
GHz desktop.

Our method achieves  orders  of  magni tude 
improvement in speed without sacrificing precision. As 
the resolution increases, performance gains scale 
linearly, making this approach particularly suitable for 
real-time applications.

4. Discussion

The Straight Wall Effect optimization fundamentally 
transforms the way distance maps are computed in 
structured scenarios. While it provides exceptional 
speed gains for images containing aligned edges, the 
approach may require additional heuristics for 
arbitrary shapes, such as fractals or irregular 
boundaries. Future work will explore adaptive 
heuristics to extend the method to more complex 
geometries.
For example, a quick statistical analysis on pixel-level 
patterns showed that around 75% of the outline pixels a 
large round object are in a wall-like straight segment, 
see Fig.2 for explanation about the patterns and 
consequent decisions. A more general analysis is for 
future study.

  (a)     (b)     ( c )

Figure 1 depicts the operation of the evaluated methods in a simplified way in a reduced image scale. The naive method 
(a) seeks after the closest black pixel, separately for each white pixel. This gets increasingly costly when the image 
resolution expands. However, the basic EDT method (b) turns the search the other way round, and calculates a distance 
map by starting from each outline pixel of all black objects, and updates the map every time when finding a new minimum 
distance for a certain white pixel. This is more efficient because there are now less starting-points for the search than in 
the previous method. Furthermore, the number of starting-points increases linearly when the image gets larger. The 
Straight-wall method (c) analyzes the black object's outlines on pixel-level. Instead of performing a general distance 
search across multiple directions, our optimized approach calculates distances only for pixels lying on specific linear 
paths perpendicular to structured walls. The corner-pixels of the black object need to directionally seek corners of the 
image sector-wise, but nevertheless the speed of the linear-path calculations dominate the overall performance.
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is set to one–third of the total image dimension. The 
starting and ending indices (`ObjBegin` and ̀ ObjEnd`) 
are calculated so that the object is centered.

Distance Table  

- Distance Map (distTbl): 
  A corresponding 2D array of double-precision values 
is used to store the computed distances. Initially, every 
pixel is assigned an “infinite” distance (set using a 
constant ̀ Inf = 1.0e+099`).

Neighbor Data  

- Neighborhood Array (`nb`) and Combination 
Variable (`nbComb`):  
  To detect edge pixels reliably, we inspect immediate 
8-neighborhood values. In the current implementation, 
only four cardinal neighbors (up, left, right, down) are 
explicitly used. Their Boolean values are stored in an 
array `nb[8]` (even though only indices 1, 3, 4, and 6 
are used) and then combined into a bit-code 
(`nbComb`) that governs the subsequent control flow.

B. Fundamental Distance Functions

1. Pixel Comparison – ̀ Compare2`  
The function  

 bool Compare2(int x, int y)

checks whether a given coordinate lies within the 
image bounds. If it does, the function returns the 
negation of `image[x][y]` (i.e., `true` if the pixel is 
white and ̀ false` if black). This is central for our update 
routines because we wish to update the distance map 

Appendices

Appendix 1  

Detailed Operation of the Optimized Distance Map 
Computation

This appendix describes in detail the inner workings of 
our optimized distance map algorithm. In our 
implementation, we focus on reducing the number of 
expensive distance (Euclidean norm) calculations by 
exploiting the “straight wall” effect. The key idea is 
that when a black region (object) is surrounded by 
white pixels, only those pixels along the edge facing 
the white background (i.e. black "corner" pixels) need 
to be updated with precise distance values toward the 
white sector. The remainder of the computation may be 
restricted to propagation along straight lines. The 
following sections describe our code’s structure and 
logic in detail. The code is written in C++ language.

A. Data Structures and Initialization

Image & Object Representation 

- Image Matrix: 
  A  t w o - d i m e n s i o n a l  B o o l e a n  a r r a y 
`image[ImgSz][ImgSz]` represents the image. A pixel 
value of ̀ false` means white (background), while ̀ true` 
represents a black pixel (object). In our experiment, the 
image is 1000×1000 pixels.

- Object Placement: 
  A black square is drawn in the center. The square’s size 

Figure 2 shows an example of other black-object shapes. Here is a detail of a round objects outline. As we can see, when 
going into pixel level, there are many straight-wall like sections to be fully optimized. There are three "corner"-pixels, that 
need a directed sector-wise threatment. However, there are also three "inner"-pixels (marked as "X") that could be entirely 
skipped, because they do not yield new minimums into the map; which is easy to add into our methods implementation at 
no extra cost.
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I (i.e., moving left) and updates:
  
  distTbl[x-i][y] = min (distTbl[x-i][y],  i)
  
- **Row-Rightward – ̀ UpdateDistanceMap4`:**  
  Similar to the leftward version, but propagation is to 
the right:
  
  distTbl[x+i][y] = min (distTbl[x+i][y], i)
  
- **Column-Upward – ̀ UpdateDistanceMap5`:**  
  Propagation upward along the column:
  
   distTbl[x][y+i] = min (distTbl[x][y+i],  i)
  
- **Column-Downward – ̀ UpdateDistanceMap6`:**  
  Propagation downward:
  
   distTbl[x][y-i] = min (distTbl[x][y-i], i)
  

Each of these directional functions solely updates 
pixels along a single axis. This is the key “straight 
wall” optimization: by restricting the update direction, 
we avoid the quadratic number of calculations required 
when considering all directions.

D. Overall Workflow

1. Initialization  
- The distance map is initialized so that every pixel 
holds an “infinite” distance.
- A black square (object) is drawn in the center.

2. Identification of Edge Pixels  
- The algorithm iterates over all pixels.
- For every pixel that is black (i.e., part of the object), 
the code checks its immediate 4–neighbors. If any 
neighbor is white (using:
  
  if (!image[x-1][y] || !image[x+1][y] || !image[x][y-1] || 
!image[x][y+1])
  
  ), then the pixel is flagged as being on the boundary.

3. Conditional Updating via Switch-Case  
- Based on the state of the four immediate neighbors, a 
bit-combination (`nbComb`) is created.  
- Using a ̀ switch-case` structure, the algorithm selects 
one of the optimized Update routines:
  - Cases corresponding to specific bit patterns (e.g., 
`0x0d`, `0x0b`, `0x07`, `0x0e`) trigger the one-
d i m e n s i o n a l  p r o p a g a t i o n  f u n c t i o n s  ( i . e . , 
UpdateDistanceMap3–6).  

only for background (white) pixels adjacent to the 
object.

2. Euclidean Norm Calculation – ̀ CalcHypotenuse2`  
The function  

 double CalcHypotenuse2(int len1, int len2)

computes the Euclidean distance using the formula:  

2 2 s = √ (len1  + len2 )

This function is invoked repeatedly when a candidate 
white pixel’s distance from a black (object edge) pixel 
is being evaluated.

C. Update Functions for Distance Propagation

Our implementation employs several specialized 
update routines that propagate a distance value along a 
single row or column based on the “straight wall” 
observation:

1. General Update – ̀ UpdateDistanceMap`  

This function is intended as the fallback update routine 
when the neighboring conditions do not match an 
optimized direction. It uses an incremental layer 
approach (indexed by ̀ i`) to examine pixels in a square 
“shell” centered at a given black pixel at position (x, y). 
Inside the helper function ̀ IsMatch2`, the code:
- Iterates horizontally from (x-i, y) to (x+i, y) for both 
the top and bottom edges of the square.
- Iterates vertically from (x, y-i+1) to (x, y+i-1) for the 
left and right edges.
- For every candidate white pixel (detected via 
`Compare2`), the distance is updated with:
  
  d i s t T b l [ . ]  =  m i n  ( { c u r r e n t  v a l u e } ,  
CalcHypotenuse2(... ) )
  
There are also further refinements (e.g., backtracking 
criteria) to terminate the search once the optimal or 
sufficiently low distance is achieved.

2. Directional Update Functions  

For pixels that reside on an object’s “straight wall,” 
only one-dimensional propagation is necessary. Based 
on the values stored in the neighbor bit array, the 
algorithm distinguishes four specific cases:
- **Row-Leftward – ̀ UpdateDistanceMap3`:**  
  For a given black pixel (x, y) where the leftward 
neighbor is white, the function iterates with increasing 
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  -  Fo r  o the r  configura t ions ,  t he  gene ra l 
`UpdateDistanceMap` is invoked.
  
This conditional branching ensures that when the 
object boundary aligns in a straight line relative to the 
background, only the most efficient directional update 
is triggered.

NB: For simplicity, this demo uses 4-neighbors, but the 
full implementation must encode all 8-neighbor values 
in the nbComb structure to detect all cases and apply a 
correct function!

4. Time Measurement and Debug Output  
- The total runtime is measured and printed.
- Debug data (selected rows and columns from the 
distance map) is output to verify correctness.

E. Discussion and Heuristics

The core idea behind the optimization is that for many 
structured objects (e.g., a centered square), only a small 
subset of the object’s edge pixels actually govern the 
minimal distances to the background. By using a 
combination of neighbor evaluation and directional 
updates:
- The overall number of distance (Euclidean norm) 
calculations is reduced dramatically.
- The propagation along the “straight wall” is 
linear—yielding an O(n) behavior along that 
axis—versus a full two-dimensional search that might 

2
be O(n ).

This effect, which we term the “Straight Wall Effect,” is 
further exploited by the use of a `switch-case` 
mechanism. The bit-combination of neighbor values 
allows the algorithm to rapidly decide which single-
axis update is most appropriate, avoiding unnecessary 
iterations.

F. Limitations and Future Refinements

While the current implementation demonstrates 
impressive speedups, especially on large images, some 
aspects remain experimental:
- The system currently covers only the four primary 
directions. Robust handling of diagonal and irregular 
boundaries  require additional cases.
- Further validation on more complex images (beyond 
the structured black square) is needed to generalize the 
proposed heuristic.

Conclusion

This appendix has detailed the operation of our 
optimized distance map computation. By focusing on 
“straight wall” optimization and conditional 
directional propagation, the algorithm reduces 
computational overhead significantly over the naive 
method. This approach is particularly powerful for 
images with structured object boundaries, as 
demonstrated by the substantial performance 
improvements observed in our experiments.

Appendix 2.

The code (see the following pages).
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//
// main_TEST.cpp
//

#include <stdio.h>
#include <math.h>
#include <time.h>

const int ImgSz = 1000;///TOT size of the image dimension
bool image[ImgSz][ImgSz] = { 0 };//initialize all "white"

const int ObjSz = ImgSz/3;//black square dimension
const int ObjBegin = (ImgSz - ObjSz)/2;//front edge location of the black square
const int ObjEnd = ObjBegin + ObjSz;//rear edge location of the black square

const int w = ImgSz, h = ImgSz;

double distTbl[ImgSz][ImgSz];
const double Inf = 1.0e+099;

bool nb[8] = { 0 };//8-neighbour pixels
int nbComb = 0;//bit-combined value

bool z = 0;//*** Backtracking (if zero) ***

inline double Min(double a, double b) {
 if (a<b)
 {
  return a;
 }
 else
 {
  z = 1;
  return b;
 }
}

bool Compare2(int x, int y)
{
 if (x < 0 || x >= w || y < 0 || y >= h) return false;//(stop if outside)
 else return !image[x][y];
}
double CalcHypotenuse2(int len1, int len2)
{
 return pow(len1*len1 + len2*len2, .5);
}
bool IsMatch2(int x, int y, int i)
{
 for (int a = x - i; a <= (x + i); a++)
 {
  if (Compare2(a, y - i))
   distTbl[a][y-i] = Min(distTbl[a][y-i], CalcHypotenuse2(a - x, i));
  if (Compare2(a, y + i))
   distTbl[a][y+i] = Min(distTbl[a][y+i], CalcHypotenuse2(a - x, i));
 }
 for (int b = y - i + 1; b < (y + i); b++)
 {
  if (Compare2(x - i, b))
   distTbl[x-i][b] = Min(distTbl[x-i][b], CalcHypotenuse2(i, b - y));
  if (Compare2(x + i, b))
   distTbl[x+i][b] = Min(distTbl[x+i][b], CalcHypotenuse2(i, b - y));
 }
 if (i==0) return true;
 else return z;
}
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void UpdateDistanceMap(int x, int y)
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
  z = 0;
  if (IsMatch2(x, y, i)==0)
  {
   return;//*** Backtracking ***
  }
 }
}
//
//Optimized versions of the Map
//
void UpdateDistanceMap3(int x, int y)//Row-Leftward version
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
  z = 0;
  if (Compare2(x - i, y)) distTbl[x-i][y] = Min(distTbl[x-i][y], double(i));
  if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap4(int x, int y)//Row-Rightward version
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
  z = 0;
  if (Compare2(x + i, y)) distTbl[x+i][y] = Min(distTbl[x+i][y], double(i));
  if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap5(int x, int y)//Column-Upward
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
  z = 0;
  if (Compare2(x, y+i)) distTbl[x][y+i] = Min(distTbl[x][y+i], double(i));
  if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap6(int x, int y)//Column-Downward
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
  z = 0;
  if (Compare2(x, y-i)) distTbl[x][y-i] = Min(distTbl[x][y-i], double(i));
  if (i && !z) return;//*** Backtracking ***
 }
}

int main() {
 {
  const time_t startT = time(0);

  for (int i = 0; i < ImgSz; i++)
  {
   for (int j = 0; j < ImgSz; j++)
   {
    distTbl[i][j] = Inf;//initial distance set to "infinity"
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   }
  } 
  for (int i = ObjBegin; i < ObjEnd; i++)
  {
   for (int j = ObjBegin; j < ObjEnd; j++)
    image[i][j] = 1;//set "black"
  }
  for (int x = 0; x < ImgSz; x++)
  {
   for (int y = 0; y < ImgSz; y++)
   {
    if (image[x][y]) 
    {
     nb[1] = image[x  ][y-1];
     nb[3] = image[x-1][y];
     nb[4] = image[x+1][y];
     nb[6] = image[x  ][y+1];
     if (!nb[1] || !nb[3] || !nb[4] || !nb[6])
     {
/*      nb[0] = image[x-1][y-1];//*** TODO ***
      nb[2] = image[x+1][y-1];
      nb[5] = image[x-1][y+1];
      nb[7] = image[x+1][y+1];*/
      nbComb = nb[1] + nb[3]*2 + nb[4]*4 + nb[6]*8;
      switch (nbComb)
      {
      case 0x0d:
       UpdateDistanceMap3(x, y);//Row-Leftward version
       break;
      case 0x0b:
       UpdateDistanceMap4(x, y);//Row-Rightward version
       break;
      case 0x07:
       UpdateDistanceMap5(x, y);//Column-Upward
       break;
      case 0x0e:
       UpdateDistanceMap6(x, y);//Column-Downward
       break;
      /* TODO: add here more optimizations cases  */   
      default:
       UpdateDistanceMap(x, y);
      }
     }
    }
   }
   if ((x%10)==0) printf(".");
  }
  const time_t stopT = time(0);

  printf("\nready (dur: %d)\n", int(stopT-startT));

  printf("\n\nDEBUG DATA PRINT:\n\n");
  for (int i = 0; i < ImgSz; i++) printf(" %f %f %f %f\n", distTbl[i][0], distTbl[i][ImgSz-1], distTbl[0][i], distTbl[ImgSz-1][i]);
 }
END:
 _fcloseall();
 getchar();//"pause"
 return 0;
}
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