
Our method takes advantage of the fact that, in
structured images where edges form "walls," the
closest point to any background pixel along a
perpendicular direction to the wall can be found
deterministically. Instead of performing a general
distance search across multiple directions, our
optimized approach calculates distances only for pixels
lying on specific linear paths perpendicular to
structured walls.
Although digital outlines are never perfectly straight in
continuous space, pixel-level rows, columns, and
diagonals are. And, with an analysis of closest
neighbor-pixels, it is easy to decide which operation to
apply to each outline pixel, as explained in Figure 1c.

The implementation follows these steps:
1. Edge Detection: Identify structured black regions

(walls).
2. Direction-Based Distance Propagation: Assign

distance calculations only to linear pixel paths
perpendicular to the nearest edge. This eliminates
unnecessary calculations in areas where direct
projections provide the closest points.

3. Selective Neighbor Evaluation: Instead of
evaluating all pixels, a switch-case logic
determines whether a pixel belongs to an optimal
linear path.

This results in a dramatically reduced number of
required computations compared to conventional
exhaustive distance searches.

3. Results

We tested our approach on a 1000 × 1000 image
conta in ing s t ructured edge regions . Three
implementations were compared:

1. Introduction

Computing distance maps efficiently has long been a
challenge in image processing, particularly when
dealing with large image resolutions. Conventional
methods, such as naive per-pixel searching, exhibit
quadratic complexity, making them infeasible for real-
time applications. The state-of-the-art techniques,
including Euclidean Distance Transforms (EDT) [1]
and Multi-Source BFS (MS-BFS) [2], provide
optimizations but may still suffer from excessive
computational overhead in complex scenarios.

Here, we propose a new method that leverages the
geometry of structured edges, referred to as the
"Straight Wall Effect." This technique enables targeted
distance calculations in predictable directions,

2
reducing the computational burden from O(n)
complexity to O(n) in specific cases, particularly for
structured shapes such as rectangles and aligned
segments.

2. Methodology

2.1 Conventional Approaches

In naive methods, each background pixel iterates
outward to find the nearest edge pixel (see Fig.1a). This
approach guarantees correctness but results in
excessive computations. Traditional distance
transform algorithms, such as Felzenszwalb and
Huttenlocher’s EDT [3], mitigate this by precomputing
nearest edges through one-dimensional sweeps,
leveraging lower-envelope functions. See Fig.1b for
the basic EDT operation.

2.2 Straight Wall Optimization

A Novel Approach to Efficient Distance Map
Calculation Using Straight Wall Optimization
Kari Väkevä, Espoo, Finland

Abstract
Traditional distance map computations rely on exhaustive pixel-wise searching,
leading to performance bottlenecks, especially in high-resolution images. In this
paper, we present an exact algorithm exploiting the pixel-grid’s straight lines to
achieve 1000 x speedup over the naïve search.

Keywords
Distance Transfer, Distance map,
Euclidean distance, Exact method,
Algorithm optimization.

Copyright (c) 2025 kari väkevä First version created 4 Jun 2025; Updated: 9 Jun 2025

5. Conclusion

We present a novel method for optimizing distance
map calculations by leveraging structured wall
projections, dramatically reducing computational
time. This approach demonstrates that targeted pixel
evaluations can replace exhaustive searches, achieving
substantial efficiency improvements. Our findings
suggest broad applicability in real-time graphics
processing, robotics , and medical imaging
applications.

References

[1] "Distance transform", in wikipedia english.
https://en.wikipedia.org/wiki/Distance_transform

[2] Devansh blog. "Multisource BFS for your FAANG
coding interviews".
https://medium.com/geekculture/multisource-bfs-for -
your-faang-coding-interviews-d5177753f507

[3] Felzenszwalb, Pedro F., and Daniel P. Huttenlocher.
"Distance Transforms of Sampled Functions".
THEORY OF COMPUTING, Volume 8 (2012), pp.
415–428. www.theoryofcomputing.org

1. Naive pixel-wise searching: 809 seconds.
2. Basic EDT-based method: 41 seconds.
3. Straight Wall Optimization: <1 seconds on a 3
GHz desktop.

Our method achieves orders of magni tude
improvement in speed without sacrificing precision. As
the resolution increases, performance gains scale
linearly, making this approach particularly suitable for
real-time applications.

4. Discussion

The Straight Wall Effect optimization fundamentally
transforms the way distance maps are computed in
structured scenarios. While it provides exceptional
speed gains for images containing aligned edges, the
approach may require additional heuristics for
arbitrary shapes, such as fractals or irregular
boundaries. Future work will explore adaptive
heuristics to extend the method to more complex
geometries.
For example, a quick statistical analysis on pixel-level
patterns showed that around 75% of the outline pixels a
large round object are in a wall-like straight segment,
see Fig.2 for explanation about the patterns and
consequent decisions. A more general analysis is for
future study.

 (a) (b) (c)

Figure 1 depicts the operation of the evaluated methods in a simplified way in a reduced image scale. The naive method
(a) seeks after the closest black pixel, separately for each white pixel. This gets increasingly costly when the image
resolution expands. However, the basic EDT method (b) turns the search the other way round, and calculates a distance
map by starting from each outline pixel of all black objects, and updates the map every time when finding a new minimum
distance for a certain white pixel. This is more efficient because there are now less starting-points for the search than in
the previous method. Furthermore, the number of starting-points increases linearly when the image gets larger. The
Straight-wall method (c) analyzes the black object's outlines on pixel-level. Instead of performing a general distance
search across multiple directions, our optimized approach calculates distances only for pixels lying on specific linear
paths perpendicular to structured walls. The corner-pixels of the black object need to directionally seek corners of the
image sector-wise, but nevertheless the speed of the linear-path calculations dominate the overall performance.

— 2 —

is set to one–third of the total image dimension. The
starting and ending indices (`ObjBegin` and ̀ ObjEnd`)
are calculated so that the object is centered.

Distance Table

- Distance Map (distTbl):
 A corresponding 2D array of double-precision values
is used to store the computed distances. Initially, every
pixel is assigned an “infinite” distance (set using a
constant ̀ Inf = 1.0e+099`).

Neighbor Data

- Neighborhood Array (`nb`) and Combination
Variable (`nbComb`):
 To detect edge pixels reliably, we inspect immediate
8-neighborhood values. In the current implementation,
only four cardinal neighbors (up, left, right, down) are
explicitly used. Their Boolean values are stored in an
array `nb[8]` (even though only indices 1, 3, 4, and 6
are used) and then combined into a bit-code
(`nbComb`) that governs the subsequent control flow.

B. Fundamental Distance Functions

1. Pixel Comparison – ̀ Compare2`
The function

 bool Compare2(int x, int y)

checks whether a given coordinate lies within the
image bounds. If it does, the function returns the
negation of `image[x][y]` (i.e., `true` if the pixel is
white and ̀ false` if black). This is central for our update
routines because we wish to update the distance map

Appendices

Appendix 1

Detailed Operation of the Optimized Distance Map
Computation

This appendix describes in detail the inner workings of
our optimized distance map algorithm. In our
implementation, we focus on reducing the number of
expensive distance (Euclidean norm) calculations by
exploiting the “straight wall” effect. The key idea is
that when a black region (object) is surrounded by
white pixels, only those pixels along the edge facing
the white background (i.e. black "corner" pixels) need
to be updated with precise distance values toward the
white sector. The remainder of the computation may be
restricted to propagation along straight lines. The
following sections describe our code’s structure and
logic in detail. The code is written in C++ language.

A. Data Structures and Initialization

Image & Object Representation

- Image Matrix:
 A t w o - d i m e n s i o n a l B o o l e a n a r r a y
`image[ImgSz][ImgSz]` represents the image. A pixel
value of ̀ false` means white (background), while ̀ true`
represents a black pixel (object). In our experiment, the
image is 1000×1000 pixels.

- Object Placement:
 A black square is drawn in the center. The square’s size

Figure 2 shows an example of other black-object shapes. Here is a detail of a round objects outline. As we can see, when
going into pixel level, there are many straight-wall like sections to be fully optimized. There are three "corner"-pixels, that
need a directed sector-wise threatment. However, there are also three "inner"-pixels (marked as "X") that could be entirely
skipped, because they do not yield new minimums into the map; which is easy to add into our methods implementation at
no extra cost.

— 3 —

I (i.e., moving left) and updates:

 distTbl[x-i][y] = min (distTbl[x-i][y], i)

- **Row-Rightward – ̀ UpdateDistanceMap4`:**
 Similar to the leftward version, but propagation is to
the right:

 distTbl[x+i][y] = min (distTbl[x+i][y], i)

- **Column-Upward – ̀ UpdateDistanceMap5`:**
 Propagation upward along the column:

 distTbl[x][y+i] = min (distTbl[x][y+i], i)

- **Column-Downward – ̀ UpdateDistanceMap6`:**
 Propagation downward:

 distTbl[x][y-i] = min (distTbl[x][y-i], i)

Each of these directional functions solely updates
pixels along a single axis. This is the key “straight
wall” optimization: by restricting the update direction,
we avoid the quadratic number of calculations required
when considering all directions.

D. Overall Workflow

1. Initialization
- The distance map is initialized so that every pixel
holds an “infinite” distance.
- A black square (object) is drawn in the center.

2. Identification of Edge Pixels
- The algorithm iterates over all pixels.
- For every pixel that is black (i.e., part of the object),
the code checks its immediate 4–neighbors. If any
neighbor is white (using:

 if (!image[x-1][y] || !image[x+1][y] || !image[x][y-1] ||
!image[x][y+1])

), then the pixel is flagged as being on the boundary.

3. Conditional Updating via Switch-Case
- Based on the state of the four immediate neighbors, a
bit-combination (`nbComb`) is created.
- Using a ̀ switch-case` structure, the algorithm selects
one of the optimized Update routines:
 - Cases corresponding to specific bit patterns (e.g.,
`0x0d`, `0x0b`, `0x07`, `0x0e`) trigger the one-
d i m e n s i o n a l p r o p a g a t i o n f u n c t i o n s (i . e . ,
UpdateDistanceMap3–6).

only for background (white) pixels adjacent to the
object.

2. Euclidean Norm Calculation – ̀ CalcHypotenuse2`
The function

 double CalcHypotenuse2(int len1, int len2)

computes the Euclidean distance using the formula:

2 2 s = √ (len1 + len2)

This function is invoked repeatedly when a candidate
white pixel’s distance from a black (object edge) pixel
is being evaluated.

C. Update Functions for Distance Propagation

Our implementation employs several specialized
update routines that propagate a distance value along a
single row or column based on the “straight wall”
observation:

1. General Update – ̀ UpdateDistanceMap`

This function is intended as the fallback update routine
when the neighboring conditions do not match an
optimized direction. It uses an incremental layer
approach (indexed by ̀ i`) to examine pixels in a square
“shell” centered at a given black pixel at position (x, y).
Inside the helper function ̀ IsMatch2`, the code:
- Iterates horizontally from (x-i, y) to (x+i, y) for both
the top and bottom edges of the square.
- Iterates vertically from (x, y-i+1) to (x, y+i-1) for the
left and right edges.
- For every candidate white pixel (detected via
`Compare2`), the distance is updated with:

 d i s t T b l [.] = m i n ({ c u r r e n t v a l u e } ,
CalcHypotenuse2(...))

There are also further refinements (e.g., backtracking
criteria) to terminate the search once the optimal or
sufficiently low distance is achieved.

2. Directional Update Functions

For pixels that reside on an object’s “straight wall,”
only one-dimensional propagation is necessary. Based
on the values stored in the neighbor bit array, the
algorithm distinguishes four specific cases:
- **Row-Leftward – ̀ UpdateDistanceMap3`:**
 For a given black pixel (x, y) where the leftward
neighbor is white, the function iterates with increasing

— 4 —

 - Fo r o the r configura t ions , t he gene ra l
`UpdateDistanceMap` is invoked.

This conditional branching ensures that when the
object boundary aligns in a straight line relative to the
background, only the most efficient directional update
is triggered.

NB: For simplicity, this demo uses 4-neighbors, but the
full implementation must encode all 8-neighbor values
in the nbComb structure to detect all cases and apply a
correct function!

4. Time Measurement and Debug Output
- The total runtime is measured and printed.
- Debug data (selected rows and columns from the
distance map) is output to verify correctness.

E. Discussion and Heuristics

The core idea behind the optimization is that for many
structured objects (e.g., a centered square), only a small
subset of the object’s edge pixels actually govern the
minimal distances to the background. By using a
combination of neighbor evaluation and directional
updates:
- The overall number of distance (Euclidean norm)
calculations is reduced dramatically.
- The propagation along the “straight wall” is
linear—yielding an O(n) behavior along that
axis—versus a full two-dimensional search that might

2
be O(n).

This effect, which we term the “Straight Wall Effect,” is
further exploited by the use of a `switch-case`
mechanism. The bit-combination of neighbor values
allows the algorithm to rapidly decide which single-
axis update is most appropriate, avoiding unnecessary
iterations.

F. Limitations and Future Refinements

While the current implementation demonstrates
impressive speedups, especially on large images, some
aspects remain experimental:
- The system currently covers only the four primary
directions. Robust handling of diagonal and irregular
boundaries require additional cases.
- Further validation on more complex images (beyond
the structured black square) is needed to generalize the
proposed heuristic.

Conclusion

This appendix has detailed the operation of our
optimized distance map computation. By focusing on
“straight wall” optimization and conditional
directional propagation, the algorithm reduces
computational overhead significantly over the naive
method. This approach is particularly powerful for
images with structured object boundaries, as
demonstrated by the substantial performance
improvements observed in our experiments.

Appendix 2.

The code (see the following pages).

— 5 —

//
// main_TEST.cpp
//

#include <stdio.h>
#include <math.h>
#include <time.h>

const int ImgSz = 1000;///TOT size of the image dimension
bool image[ImgSz][ImgSz] = { 0 };//initialize all "white"

const int ObjSz = ImgSz/3;//black square dimension
const int ObjBegin = (ImgSz - ObjSz)/2;//front edge location of the black square
const int ObjEnd = ObjBegin + ObjSz;//rear edge location of the black square

const int w = ImgSz, h = ImgSz;

double distTbl[ImgSz][ImgSz];
const double Inf = 1.0e+099;

bool nb[8] = { 0 };//8-neighbour pixels
int nbComb = 0;//bit-combined value

bool z = 0;//*** Backtracking (if zero) ***

inline double Min(double a, double b) {
 if (a<b)
 {
 return a;
 }
 else
 {
 z = 1;
 return b;
 }
}

bool Compare2(int x, int y)
{
 if (x < 0 || x >= w || y < 0 || y >= h) return false;//(stop if outside)
 else return !image[x][y];
}
double CalcHypotenuse2(int len1, int len2)
{
 return pow(len1*len1 + len2*len2, .5);
}
bool IsMatch2(int x, int y, int i)
{
 for (int a = x - i; a <= (x + i); a++)
 {
 if (Compare2(a, y - i))
 distTbl[a][y-i] = Min(distTbl[a][y-i], CalcHypotenuse2(a - x, i));
 if (Compare2(a, y + i))
 distTbl[a][y+i] = Min(distTbl[a][y+i], CalcHypotenuse2(a - x, i));
 }
 for (int b = y - i + 1; b < (y + i); b++)
 {
 if (Compare2(x - i, b))
 distTbl[x-i][b] = Min(distTbl[x-i][b], CalcHypotenuse2(i, b - y));
 if (Compare2(x + i, b))
 distTbl[x+i][b] = Min(distTbl[x+i][b], CalcHypotenuse2(i, b - y));
 }
 if (i==0) return true;
 else return z;
}

— 6 —

void UpdateDistanceMap(int x, int y)
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
 z = 0;
 if (IsMatch2(x, y, i)==0)
 {
 return;//*** Backtracking ***
 }
 }
}
//
//Optimized versions of the Map
//
void UpdateDistanceMap3(int x, int y)//Row-Leftward version
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
 z = 0;
 if (Compare2(x - i, y)) distTbl[x-i][y] = Min(distTbl[x-i][y], double(i));
 if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap4(int x, int y)//Row-Rightward version
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
 z = 0;
 if (Compare2(x + i, y)) distTbl[x+i][y] = Min(distTbl[x+i][y], double(i));
 if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap5(int x, int y)//Column-Upward
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
 z = 0;
 if (Compare2(x, y+i)) distTbl[x][y+i] = Min(distTbl[x][y+i], double(i));
 if (i && !z) return;//*** Backtracking ***
 }
}
void UpdateDistanceMap6(int x, int y)//Column-Downward
{
 int LimA = w;
 for (int i = 0; i < LimA; i++)
 {
 z = 0;
 if (Compare2(x, y-i)) distTbl[x][y-i] = Min(distTbl[x][y-i], double(i));
 if (i && !z) return;//*** Backtracking ***
 }
}

int main() {
 {
 const time_t startT = time(0);

 for (int i = 0; i < ImgSz; i++)
 {
 for (int j = 0; j < ImgSz; j++)
 {
 distTbl[i][j] = Inf;//initial distance set to "infinity"

— 7 —

 }
 }
 for (int i = ObjBegin; i < ObjEnd; i++)
 {
 for (int j = ObjBegin; j < ObjEnd; j++)
 image[i][j] = 1;//set "black"
 }
 for (int x = 0; x < ImgSz; x++)
 {
 for (int y = 0; y < ImgSz; y++)
 {
 if (image[x][y])
 {
 nb[1] = image[x][y-1];
 nb[3] = image[x-1][y];
 nb[4] = image[x+1][y];
 nb[6] = image[x][y+1];
 if (!nb[1] || !nb[3] || !nb[4] || !nb[6])
 {
/* nb[0] = image[x-1][y-1];//*** TODO ***
 nb[2] = image[x+1][y-1];
 nb[5] = image[x-1][y+1];
 nb[7] = image[x+1][y+1];*/
 nbComb = nb[1] + nb[3]*2 + nb[4]*4 + nb[6]*8;
 switch (nbComb)
 {
 case 0x0d:
 UpdateDistanceMap3(x, y);//Row-Leftward version
 break;
 case 0x0b:
 UpdateDistanceMap4(x, y);//Row-Rightward version
 break;
 case 0x07:
 UpdateDistanceMap5(x, y);//Column-Upward
 break;
 case 0x0e:
 UpdateDistanceMap6(x, y);//Column-Downward
 break;
 /* TODO: add here more optimizations cases */
 default:
 UpdateDistanceMap(x, y);
 }
 }
 }
 }
 if ((x%10)==0) printf(".");
 }
 const time_t stopT = time(0);

 printf("\nready (dur: %d)\n", int(stopT-startT));

 printf("\n\nDEBUG DATA PRINT:\n\n");
 for (int i = 0; i < ImgSz; i++) printf(" %f %f %f %f\n", distTbl[i][0], distTbl[i][ImgSz-1], distTbl[0][i], distTbl[ImgSz-1][i]);
 }
END:
 _fcloseall();
 getchar();//"pause"
 return 0;
}

— 8 —

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

